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Abstract

A general method is presented for predicting the ensemble average steady-state response of complex
vibro-acoustic systems that contain subsystems with uncertain, or random, properties. The method
combines deterministic and statistical techniques to produce a non-iterative hybrid method that
incorporates equations of dynamic equilibrium and power balance. The method is derived explicitly
without reference to statistical energy analysis (SEA); however, it is seen that the wave approach to SEA
can be viewed as a special case of the proposed method. The proposed method provides a flexible way to
account for necessary deterministic details in a vibro-acoustic analysis without requiring that an entire
system be modeled deterministically. The method therefore provides a potential solution to the mid-
frequency problem (in which a system is neither entirely deterministic nor entirely statistical). The
application of the method is illustrated with a numerical validation example.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with the development of a predictive method for describing the
transmission of noise and vibration in complex structural-acoustic systems. The term ‘complex’ is
used to indicate that the properties of certain subsystems of a system are not known to a high-
enough level of precision to justify (or warrant) the use of a deterministic analysis. Such
see front matter r 2005 Elsevier Ltd. All rights reserved.
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subsystems typically support several propagating wavetypes (with many directions of propaga-
tion) and are large in comparison with a wavelength. The traditional approach to describing
the dynamic interactions of such subsystems is to use the method of statistical energy analysis
(SEA) [1,2].
Broadly speaking, SEA represents a field of study in which statistical descriptions of a system

are employed in order to simplify the analysis of complicated structural-acoustic problems [3].
While such a definition encompasses many different methods and analysis techniques, SEA is
often perceived (perhaps for historical reasons) as being a method for describing the storage and
transfer of vibrational energy between subsystems of weakly coupled modes. In particular, the
energy storage capacity of a given subsystem is described by a parameter termed the modal
density; the coupling between subsystems is described by parameters termed coupling loss factors
(CLFs). Applying conservation of energy to each subsystem then results in a set of linear
simultaneous equations for the subsystem energies.
The initial justification for the SEA equations was based on studies of the energy flow between

pairs of coupled oscillators. The implicit assumptions associated with the extension of the two-
oscillator result to sets of coupled oscillators (the ‘modal’ approach to SEA) has been the subject
of much discussion over the past 40 years (see Fahy [2], for example). It is perhaps fair to conclude
that while providing physical insights into the response of certain systems, the modal approach
remains qualitative in nature and (for structural problems) does not provide a practical method
for calculating the parameters used in an SEA model. Most analytical predictions of the SEA
parameters are based on a wave approach. In the wave approach to SEA, a complex subsystem is
represented as a collection of propagating wavetypes. The energy storage capacity of a given
subsystem is related to the expected group velocity and dimension of the subsystem. The CLFs at
a given junction are found by calculating the local transmission of energy into the ‘direct fields’ of
a number of receiving subsystems, due to the presence of a ‘diffuse reverberant field’ (with a
specified energy density) in an excited subsystem. The terms ‘direct field’ and ‘diffuse reverberant
field’ are widely used, but their definition is often qualitative and difficulties can arise when
applying such concepts to general junctions (this point is discussed in more detail in the following
section).
The wave approach to calculating the SEA CLFs for line junctions was initially discussed by

Lyon and Eichler [4] (the approach appears to have been motivated in part by Heckl’s
demonstration that room acoustics concepts could be successfully applied to structural problems
[5]). For line junctions, a diffuse field is interpreted as a set of uncorrelated plane waves with
random headings and equal power. A wave-scattering problem is then formulated and wave
transmission coefficients obtained for various discrete angles of incidence (as illustrated in
Fig. 1a). The plane-wave approach for calculating the CLFs between line-connected subsystems
has changed little over the past 40 years. The advent of dynamic stiffness-based calculations of the
wave transmission coefficients between arbitrarily oriented plate subsystems has, however,
substantially increased the types of junction that can be modeled (see, for example, Langley and
Heron [6] and Bosmans and Nightingale [7]).
The plane-wave approach provides a good description of the CLFs of junctions that are planar

and large in comparison with a wavelength. Based on the widespread use of this approach, one
might perhaps assume that plane waves are fundamental to the wave approach to SEA. However,
this is not the case. Consider, for example, a compact point junction between a plate and a
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Fig. 1. Illustration of the ‘natural’ wavetypes used to describe a ‘‘diffuse reverberant field’’ (left) and ‘‘direct field’’

(right) for: (a) line, (b) point and (c) general connections.
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cantilevered beam. Excitation of the beam results in the generation of outgoing cylindrical waves
in the plate. In principle, such cylindrical waves can be described in terms of a large number of
coherent plane waves. However, such a description is awkward; plane waves do not provide a
‘natural’ basis for describing the direct field of the plate. The most natural coordinates for
describing the direct field of the plate are clearly cylindrical waves (as illustrated in Fig. 1b).
However, it is not immediately obvious what properties should be ascribed to a set of incident
cylindrical waves in the plate in order to describe a diffuse reverberant field. It transpires that a
diffuse field can be described in terms of cylindrical waves [8] and this result may be used to
calculate CLFs for compact point junctions [9]. Based on this example, one can conclude that the
most natural wave description for the direct and reverberant fields of an SEA subsystem varies
depending on the subsystem and connection of interest.
Consider now the problem of describing the energy flows through the connection to the plate

subsystem illustrated in Fig. 1c. A single deterministic boundary condition is located within a few
wavelengths of the connection. The presence of the boundary condition has a large influence on
the local impedance of the connection. In turn, this affects the energy flow through the connection
(and the CLFs associated with any junctions which involve the connection). However, it is not
immediately obvious how the boundary condition can be accounted for in the traditional wave
approach to SEA. Firstly, it is not obvious what the most natural wavetypes are for describing the
plate response. One could, for example, describe the response in terms of the coherent response of
a large number of cylindrical waves. Such a description is, however, awkward; cylindrical waves
do not provide a ‘natural’ basis for describing the direct field of this connection. Secondly, it is not
immediately obvious how a diffuse reverberant field should be interpreted for such a connection.
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This example suggests that a more general definition of a ‘direct field’ and ‘diffuse reverberant
field’ is required in order to use the wave approach to SEA to calculate the CLFs for
general junctions.
The example presented in Fig. 1c is a specific instance of a more general problem encountered in

SEA, which occurs when deterministic boundaries of a subsystem lie within a few wavelengths of a
connection. The frequency and/or ensemble average flow of energy through a junction between a set
of coupled subsystems depends on: (i) the local impedance of the junction and (ii) the local impedance
of each connected subsystem. The local junction impedance depends on the detailed construction of
the junction and is, for example, sensitive to whether the junction contains isolators or stiffeners. In
general, a detailed description of the impedance of a complex junction requires a detailed local
deterministic model of the junction (based on, for example, a local finite element model).
The local impedance of a connection to a (two- or three-dimensional) subsystem is typically

sensitive to the deterministic details of the subsystem that lie within a few wavelengths of the
connection. For subsystems that are large compared with a wavelength, one can often obtain a
sufficiently precise description of the frequency and/or ensemble average subsystem impedance by
considering the impedance of the equivalent semi-infinite subsystem. However, for subsystems
that are small compared with a wavelength, the entire boundary of the subsystem lies ‘within a few
wavelengths of the connection’. Such subsystems often exhibit strongly coherent behavior across a
broad frequency range and can cause distinct fluctuations in the broadband frequency response of
a system (the coherence referred to here describes the coherence across a frequency band or across
an ensemble). The impedance seen from the junction depends on the details of the entire
subsystem; an accurate description of the local connection impedance therefore typically requires
that the entire subsystem be modeled deterministically.
To clarify ideas, it is helpful to consider the specific example of the transmission of vibrational

energy between the three plates illustrated in Fig. 2. Each plate can undergo both out-of-plane
flexural motion and in-plane stretching and shear motion. Typically, the flexural motion will have
a much shorter wavelength of deformation than the two in-plane motions. For example, the
wavelengths of flexural, shear and extensional waves within a 1-mm-thick steel plate at 1 kHz are
(approximately) 0.1, 3.2 and 5.5m, respectively. For many structures of practical interest, there
Fig. 2. Flexural wave transmission between subsystems 1 and 2 is sensitive to the in-plane boundary impedance applied

to a ‘distant’ boundary of subsystem 3. Case (a) represents a free boundary, case (b) represents a partially clamped

boundary.
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exists a fairly broad frequency range in which a plate subsystem is large in comparison with a
flexural wavelength, yet small in comparison with the in-plane wavelengths. The short-wavelength
motion is very difficult to model deterministically, partly because many degrees of freedom are
required to capture the detailed deformation pattern, and partly because the motion is very
sensitive to any imperfections in the system, so that no two nominally identical structures will
have exactly the same response. In contrast, the long-wavelength motion is often difficult to
describe in the traditional wave approach to SEA.
Consider, for example, the calculation of the SEA CLF between the flexural wavefields of plates

1 and 2 illustrated in Fig. 2. If all subsystems are large compared with a wavelength, then the
transmission of energy through the junction is determined by the local properties of the
subsystems (and wavefields) in the vicinity of the junction. The traditional wave approach to SEA
(based on the impedances of the equivalent semi-infinite subsystems) typically provides a good
estimate of the CLFs for the junction. However, if any of the subsystems connected to the
junction are small compared with a wavelength, then the transmission of energy through the
junction is typically no longer governed by the local junction properties. For example, Fig. 2
illustrates how the CLF between the flexural wavefields of plates 1 and 2 is sensitive to the in-
plane impedance applied to a ‘distant’ boundary of subsystem 3. In Fig. 2a, the distant boundary
is unconstrained and (below the first in-plane resonance) the in-plane impedance seen at the
junction is mainly governed by the mass of plate 3. In Fig. 2b, a single point on the distant
boundary is clamped. The in-plane impedance seen at the junction (below the first in-plane
resonance) then depends on the membrane stiffness of plate 3. The two different in-plane
impedances can cause significant differences in the way in which flexural waves are scattered at the
junction. An accurate description of the in-plane impedance of plate 3 seen by the junction
typically requires a deterministic finite element description of the membrane behavior of the plate.
In summary, in many instances a general description of the ensemble and/or frequency average

energy flows between a set of coupled subsystems often requires that certain parts of a system be
described deterministically. A general method for introducing an arbitrary amount of deterministic
detail into an SEA model, along with a general method for calculating the CLFs between SEA
subsystems, is not currently available. The lack of such a method has been referred to previously as
the ‘mid-frequency’ problem (although the term ‘strong coupling’ has also been used to refer to
certain aspects of this problem [10]). This paper provides a potential solution to the mid-frequency
problem. A general method is presented for predicting the ensemble average response of complex
vibro-acoustic systems with uncertain properties. The approach is derived explicitly without
reference to existing SEA methods. However, it is shown that the traditional wave approach to
SEA can be viewed as a special case of the more general method. The advantages and limitations of
the approach are discussed and numerical validation examples are presented.
2. A complex vibro-acoustic system

2.1. Terminology

Consider the vibro-acoustic system illustrated in Fig. 3. The system consists of a number of
coupled subsystems excited by a spatially distributed load. Each subsystem consists of a domain O
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Fig. 3. A system that comprises of a number of coupled subsystems: solid line indicates deterministic boundary, dashed

line indicates random boundary, double arrow indicates a junction, single arrow indicates a distributed excitation (mesh

used to indicate that a subsystem is entirely deterministic).
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and a boundary G. In what follows, the domain is assumed to be a three-dimensional volume
(although this volume may be defined implicitly by, for example, the two-dimensional neutral
surface of a plate and an associated thickness). At the excitation frequency of interest, some of the
subsystems may exhibit very short-wavelength deformation, while others may have a relatively
long wavelength of deformation. The boundary of the subsystems need not be simply connected
and the subsystems may therefore contain holes, cutouts and internal discontinuities.
It is assumed that certain regions of the boundary of each subsystem can be identified whose

properties are known precisely. Such regions are referred to as the ‘deterministic boundary’
regions of a subsystem. Any remaining regions of the boundary are assumed to be very uncertain
and are termed the ‘random boundary’ regions of a subsystem. Regions of the boundary that
allow energy to be transferred into or out of a subsystem (due to external excitations or coupling
to adjacent subsystems) are termed ‘connection regions’. It is assumed that the connection regions
of a subsystem form part of the deterministic boundary. For example, the deterministic boundary
might be defined to be the region of the boundary that lies within a few wavelengths of each of the
connection regions of a subsystem (in a given frequency range of interest).
If the deterministic boundary of a subsystem contains various non-contiguous connection

regions, then the relative locations of any two connection regions to the same subsystem can either
be: (i) known precisely or (ii) unknown. In the former case the connection regions to a subsystem
are said to be ‘coherently coupled’, in the latter case the connection regions to a subsystem are
said to be ‘incoherently coupled’. Typically, connection regions which lie within a few wavelengths
of each other are assumed to be ‘coherently coupled’, while connection regions that are separated
by several wavelengths are assumed to be ‘incoherently coupled’. In some instances, the
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deterministic boundary of a subsystem might represent the entire subsystem boundary; the
subsystem is then said to be ‘deterministic’. Subsystems which are not deterministic are said to be
‘statistical’.2

The connection regions of different subsystems are coupled together by various ‘junctions’.
Each junction typically involves several connection regions. In what follows, it is assumed that all
connection regions associated with a given junction are coincident and have compatible
displacement fields. The junctions can be separated into three types: (i) those that involve only
deterministic subsystems, (ii) those that involve only statistical subsystems, and (iii) those that
involve a mix of deterministic and statistical subsystems. These junctions are referred to as: (i)
deterministic junctions, (ii) statistical junctions and (iii) hybrid junctions, respectively. It can be
noted that the term ‘statistical junction’ is abbreviated terminology for ‘a junction between
statistical subsystems’.
To clarify the previous terminology (and the notion of a random boundary), it is perhaps

helpful to consider a number of simple examples. Consider a system that comprises of a small stiff
panel located in the window of a large reverberant chamber. Across the frequency range of
interest the panel may contain relatively few half wavelengths, while the reverberant chamber may
contain many half wavelengths. Such a system may be described using two subsystems: a panel
subsystem and a large acoustic cavity subsystem. The panel occupies a three-dimensional volume
of space, each dimension of which is small compared to (or commensurate with) the wavelengths
of deformation within the panel. One might therefore choose to define the deterministic boundary
of the panel subsystem as the entire exterior boundary surface of the panel. If the panel does not
contain any internal boundaries (associated with, for example, random discontinuities embedded
within the panel), then all boundaries of the panel are deterministic and the panel is therefore said
to be a ‘deterministic subsystem’.
The exchange of energy between the panel and cavity occurs through one face of the panel (the

‘wetted’ face of the panel). One can therefore define connection regions for both the panel and
cavity subsystems (in this example, the connection region represents a rectangular area with
known dimension). Consider now the definition of the deterministic boundary for the cavity
subsystem. As discussed previously, the connection regions of a subsystem must form part of the
deterministic boundary. Furthermore, the boundaries of the chamber that lie within a few
acoustic wavelengths of the connection region can also be assumed to form part of the
deterministic boundary. The deterministic boundary for the cavity then consists of the connection
region and a ‘deterministic baffle’ that lies within a few wavelengths of this connection region (for
a typical reverberant chamber one might, for example, specify that the reverberant chamber has
rigid walls in the vicinity of the connection and that the window in which the panel is placed is
recessed with a particular geometry).
If information is available for the overall dimensions of the chamber (and the geometry and

location of any internal diffusers within the chamber), one might perhaps be tempted to include
such information in the description of the deterministic boundary of the cavity. However, if the
dimensions of the cavity are large compared with a wavelength, then it is likely that such
dimensions will not be known with sufficient precision to be described deterministically. It is
2The terms ‘SEA subsystem’, ‘complex subsystem’ or ‘fuzzy subsystem’ are perhaps equally applicable in the current

context [3].
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therefore more convenient to instead assume that all remaining boundaries of the cavity form part
of an (unspecified) random boundary. Since the entire boundary of the cavity subsystem has not
been defined deterministically, the cavity is said to be a ‘statistical subsystem’. The junction
between the connection regions of the panel and cavity couples deterministic and statistical
subsystems and is therefore termed a ‘hybrid junction’.
Consider now an example in which two panels are located in two separate windows in the

previous reverberant chamber as illustrated in Fig. 4. If the connection regions of the two panels
are within a few wavelengths of each other, then the two panels are likely to exhibit coherent
interactions with each other. The two connection regions for the cavity may therefore be said to be
‘coherently coupled’. If, however, the precise locations of the two connection regions are large
compared with a wavelength, the coherent interaction between the two connection regions is likely
to be sensitive to perturbation; the two connection regions may therefore be said to be
‘incoherently coupled’.
For many structure-borne noise problems, a given subsystem may be entirely surrounded by

connection regions. Consider, for example, a thin rectangular plate whose edges are connected to
a stiff beam framework as illustrated in Fig. 5. Across the frequency range of interest, the beams
may exhibit long-wavelength behavior (which is best represented deterministically) while the
flexural wavefield of the plate may exhibit short-wavelength behavior (which is best represented
statistically). However, since the external boundary of the plate subsystem is composed entirely of
connection regions, one might conclude (based on the previous discussion) that the plate must be
modeled as a deterministic subsystem. However, this is not the case. The random boundary may,
for example, represent a series of hypothetical curves contained within the subsystem which
denote the presence of uncertainties within the subsystem. The location and geometry of the
Fig. 4. Example of two stiff panel subsystems located in windows in a large reverberant chamber. Shaded region

indicates deterministic boundary assumed for cavity subsystem; cross-hatched region indicates connection regions for

cavity subsystem.



ARTICLE IN PRESS

Fig. 5. Example of a statistical plate subsystem with an external deterministic boundary (solid lines) and a series of

hypothetical internal random boundaries (dashed lines).
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random boundary need not be specified in the present analysis—it is sufficient to note that such
boundaries exist and act as a random scattering device in each statistical subsystem. Various
approaches then exist for describing the response of the plate. For example, if the dimensions of
the plate are large compared with a wavelength then one approach is to define four separate
connection regions, one for each edge of the plate, and assume that the different connection
regions are ‘incoherently coupled’. The development of such an approach (and an investigation of
its accuracy) will be reported in a separate publication.

2.2. Degrees of freedom

A set of generalized coordinates with degrees of freedom q1 can be chosen to describe the
displacement response of the deterministic subsystems. The degrees of freedom may, for example,
represent nodal or modal degrees of freedom of the deterministic subsystems. It is assumed in
what follows that the basis function associated with each generalized coordinate is real-valued. As
discussed previously, the displacement fields of the various connection regions associated with a
given junction are assumed to be compatible. The degrees of freedom q1 therefore also describe
the displacement fields across the ‘deterministic’ and ‘hybrid’ junctions. In order to describe the
displacement field across the ‘statistical’ junctions in a model, it is necessary to define an
additional set of generalized coordinates with degrees of freedom q2. These degrees of freedom
may, for example, represent the nodal degrees of freedom of a surface mesh (or, for planar
connections, they may represent trace wavenumbers or terms in a Fourier series).
The degrees of freedom q1 and q2 may be combined to form a single set of degrees of freedom q,

where q ¼ qT1 qT2

h iT
. The degrees of freedom q are deterministic and fully define the

displacement field across all deterministic subsystems and across all connection regions within
a system. Fig. 6 illustrates the definition of the degrees of freedom q1 and q2 for a simple example
system consisting of three coupled plates (two statistical plates and one deterministic plate). The
displacement response across the deterministic plate is described by the degrees of freedom q1,
while the displacement response across the junction between the two statistical plates is described
by the degrees of freedom q2.
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Fig. 6. Degrees of freedom q1 and q2 used to describe response of deterministic subsystem (a) and junction between

statistical subsystems (b) and (c).

P.J. Shorter, R.S. Langley / Journal of Sound and Vibration 288 (2005) 669–699678
The contribution to the global dynamic stiffness matrix arising from the deterministic
subsystems can be obtained at a given frequency of interest o (using, for example, a finite or
boundary element model), and written as Dd(o). In general, the deterministic subsystems will be
non-conservative and the dynamic stiffness matrix Dd(o) will therefore be complex. The
uncoupled equations of motion for the deterministic subsystems can then be written as

Ddq ¼ fd . (1)

where fd is a vector of generalized forces applied to the deterministic degrees of freedom q.

2.3. The direct and reverberant fields of a statistical subsystem

Consider now the problem of describing the response of the statistical subsystems in the system.
In principle, one could adopt a similar approach to the previous section and attempt to calculate
the ‘exact’ contribution to the global dynamic stiffness matrix arising from each statistical
subsystem. However, an exact description of the dynamic behavior of such subsystems requires
that the properties of the subsystems are known ‘exactly’. In practice, such information is seldom
available and there is therefore an unavoidable amount of uncertainty (or missing information)
associated with the properties of such subsystems.
Various approaches exist for accounting for this missing information. One approach is to

assume arbitrary properties for the missing information. Such an approach is adopted (albeit
implicitly), when a deterministic model is used to describe the response of a complex system at
higher frequencies. The main drawback with such an approach (leaving aside issues of
computational expense) is that one is never quite sure how sensitive the computed response is
to the information that was ‘made up’. Erroneous assumptions about the properties of a system
can lead to erroneous conclusions about its response.
An alternative approach is therefore to account for the missing information by adopting a

statistical description of the subsystem dynamic behavior. A question then arises as to how one
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should define the statistical properties of the uncertain subsystems. The classical approach to this
problem is to specify the subsystem properties in terms of a detailed joint probability density
function. Various analytical and numerical methods can then be employed to relate the
probability density of the input parameters to the probability density of the response. The main
drawback with such an approach (leaving aside issues of precision and computational expense) is
that the definition of the detailed joint probability density function requires more information
about the subsystem not less. From a qualitative point of view, such methods require an extremely
detailed description of precisely what is ‘unknown’ about a given subsystem. Since the original
problem arose because of a lack of detailed information about the properties of a subsystem, the
problem becomes exacerbated and one is again forced to choose arbitrary values for missing
information (in this case, the joint probability density function for the system).
It then becomes natural to question whether it is possible to adopt a statistical description of an

uncertain subsystem which accounts for all information that is known about the subsystem, while
minimizing the number of arbitrary assumptions that are made about the properties of the
subsystem that are not known precisely. The current analysis provides one such description by
assuming that: (i) the properties of the deterministic boundaries of the statistical subsystems are
known precisely and (ii) the properties of the random boundaries of the statistical subsystems are
known extremely imprecisely (or are extremely uncertain). The following sections discuss how
such a subsystem may be included a vibro-acoustic analysis.
Consider the statistical subsystem illustrated in Fig. 7. In Ref. [11], it is shown that the response

of a statistical subsystem with an uncertain boundary can be described in terms of the
superposition of: (i) a direct field and (ii) a reverberant field. The direct field describes the outgoing
displacement field associated with a prescribed displacement of the deterministic boundary, in the
absence of the random boundary (as illustrated in Fig. 7a). The reverberant field satisfies: (i) a
blocked (i.e., zero displacement) boundary condition across the deterministic boundary and (ii)
the prescribed boundary condition across the random boundary, when added to the direct field.
The direct field is independent of the properties of the random boundary; the reverberant field is
extremely sensitive to the properties of the random boundary.
Fig. 7. Example of (a) direct field and (b) reverberant field of a connection to a statistical plate subsystem with

deterministic boundary (solid line) and random boundary (dashed line). Gray lines indicate wavefronts in the direct

field and local reactive energy flows in the reverberant field.
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The uncoupled equations of motion for the mth statistical subsystem can be derived using a
direct boundary element method and written as [11]

D
mð Þ

dir q ¼ f þ f mð Þ
rev , (2)

where D
mð Þ

dir is the ‘direct field dynamic stiffness’ matrix for the mth statistical subsystem f is a
vector of generalized forces and f mð Þ

rev is the blocked reverberant force on the connection degrees of
freedom. The direct field dynamic stiffness matrix describes the force on the connection degrees of
freedom due to the generation of a ‘direct field’ in the mth subsystem (in the absence of the
random boundary). In general, this dynamic stiffness may be computed from a boundary element
model; however, for simple point, line and area connections, the dynamic stiffness may also be
estimated analytically (this point is discussed in more detail in subsequent sections). If the
connection regions are assumed to be ‘coherently coupled’, then the calculation of the direct field
dynamic stiffness matrix of a subsystem involves all connection regions. If the connection regions
are assumed to be ‘incoherently coupled’, then the contribution to the direct field dynamic
stiffness is found separately for each connection region.
The reverberant force f mð Þ

rev describes the force on the connection degrees of freedom arising from
the reverberant field in the mth subsystem. As explained in Ref. [11], it represents a blocked force,
i.e., the force acting when the connection degrees of freedom are held fixed.

2.4. Assembled equations of motion

Assembling the equations of motion for the statistical and deterministic subsystems in a system
gives

Dtotq ¼ fext þ
X

m

f mð Þ
rev , (3)

where fext is the vector of generalized forces applied to the coupled system arising from external
excitation, and where

Dtot ¼ Dd þ
X

m

D
mð Þ

dir . (4)

The total dynamic stiffness matrix for the system Dtot is found by adding the dynamic stiffness of
the deterministic subsystems to the direct field dynamic stiffness of the statistical subsystems. If
there is uncertainty in the properties of the random boundaries of the statistical subsystems, then
the blocked reverberant forces in Eq. (3) become random variables. Writing Eq. (3) in cross-
spectral form and averaging over an ensemble of random boundaries gives

Sqq

� �
¼ D�1

tot Sff

� �
D�H
tot , (5)

where /.S indicates an ensemble average and where the expected cross-spectrum of the blocked
force is given by

Sff

� �
¼ Sextff þ

X
m

fext f
mð Þ;H
rev

� �
þ f mð Þ

rev

� �
fH

� �
þ
X
m;n

f mð Þ
rev f

nð Þ;H
rev

� �
. (6)

The symbol .�H is used to denote the Hermitian transpose of the inverse of a matrix, so that A�H

represents the following operations: conjugate(transpose(inverse(A))). The expected value of the
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response clearly depends on the statistics of the blocked reverberant force. In turn, the statistics of
the blocked reverberant force depend on the ensemble of random boundary curves assumed in a
given analysis.

2.5. An ensemble of random boundaries

At first sight, it might appear that no meaningful statements can be made about the statistics of
the blocked reverberant force without a more precise definition of the ensemble of random
boundary curves assumed in a given analysis. However, specifying an ensemble implicitly defines
some information about the random boundary. Of all possible ensemble definitions, there exists a
unique ensemble that provides the minimum amount of information about the random boundary.
This ensemble has the maximum uncertainty or maximum entropy of all possible ensembles. It
can be shown [11] that as the amount of uncertainty regarding the properties of the random
boundaries of the statistical subsystems increases, the blocked force in Eq. (6) tends to the
following limit

Sff

� �
¼ Sextff þ

X
m

S
mð Þ;rev

ff , (7)

where the cross-spectrum of the blocked reverberant force associated with the reverberant field of
the mth subsystem is given by

S
mð Þ;rev

ff ¼ am Im D
mð Þ

dir

n o
. (8)

The constant of proportionality am is related to the (ensemble average) incident power in the
reverberant field of the mth subsystem [11] (this constant is defined explicitly in subsequent
derivation). Eqs. (7) and (8) represent a diffuse field reciprocity relationship between the direct
field radiation from a connection to a statistical subsystem and the ensemble average blocked
reverberant force on the connection. As discussed in Ref. [11], this relationship is a statistical
property of an ensemble; it does not necessarily hold for individual realizations of the ensemble
(although similar statistics are often observed when an average is taken over many local modes of
a given subsystem). Furthermore, in this derivation, a ‘diffuse’ reverberant field is not an
approximation made for analytical convenience, but rather it is a limiting statistical property that
arises naturally when considering a large ensemble of random boundaries.

2.6. Ensemble average response

Inserting Eqs. (7) and (8) into Eq. (5) gives

Sqq

� �
¼ D�1

tot Sextff þ
X

m

am Im D
mð Þ

dir

n o !
D�H
tot . (9)

Eq. (9) is an exact expression for the ensemble average response of a system of coupled subsystems
with uncertain boundaries (that possess the statistics discussed previously). In order to solve
Eq. (9), it is necessary to determine the (ensemble average) amplitudes am of the reverberant fields
in the statistical subsystems. However, the amplitudes of the reverberant fields are functions of the
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response /SqqS; Eq. (9) does not therefore contain enough information for an explicit calculation
of the response. The additional information that is needed to solve Eq. (9) is introduced by
considering conservation of energy in the reverberant fields of the statistical subsystems, when
averaged across the ensemble. The ensemble average amplitudes of the reverberant fields am can
then be found by solving a set of linear simultaneous equations (similar in form to the symmetric
SEA equations). The following sections derive the various expressions that are needed to form the
power balance equations for the ensemble average response of the reverberant fields.
3. Ensemble average power in a reverberant field

3.1. Incident power and modal energy density

The ensemble average incident power in the reverberant field of the mth statistical subsystem
can be defined in a number of ways. If the incident power is related to the expected energy density,
group velocity and dimension of the subsystem, then it can be shown [11] that the constant am can
be written as3

am ¼
4Em

ponm

, (10)

where Em is the total energy contained in the reverberant field of the mth subsystem, and nm is
the modal density of the mth subsystem. Explicit definitions for these quantities can be found
in Ref. [11].
3.2. Power balance for mth reverberant field

Consider the ensemble average energy flows in the reverberant field of the mth statistical
subsystem illustrated in Fig. 8. The input power to the reverberant field P

mð Þ

in;dir is due to energy in
the direct field of the mth subsystem flowing across the random boundary. The power losses are
due to: (i) dissipation within the reverberant field and (ii) the rate at which work is done on the
connection degrees of freedom by the blocked reverberant force within the subsystem.4 Applying
conservation of energy to the steady-state response of the mth reverberant field results in the
following power balance equation

P
mð Þ

in;dir ¼ P
mð Þ
out;rev þ Pdiss;m. (11)
3The definition of the incident power in the reverberant field of a subsystem in terms of a modal energy density is not

essential, but simplifies the description of the dissipated power (in terms of a damping loss factor) and enables the

current approach to be more readily compared with traditional SEA.
4Some of this energy is dissipated within the junctions (and deterministic subsystems) in the system, the remainder is

transferred into the direct fields of any adjacent statistical subsystems.
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Fig. 8. Schematic representation of ensemble average energy flows within a statistical subsystem.
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3.3. Input power to mth reverberant field

The time and ensemble average input power to the direct field of the mth statistical subsystem is
given by

P
mð Þ

in;dir ¼
o
2

X
jk

Im D
mð Þ

dir;jk

n o
Sqq;jk

� �
, (12)

In general, the cross-spectrum Sqq is complex Hermitian; however, the previous expression yields a
real answer because of the symmetry of the direct field dynamic stiffness matrices. Inserting Eqs.
(9) and (10) into Eq. (12) gives

P
mð Þ

in;dir ¼ P
mð Þ

in;0 þ
X

n

hnm
En

nn

; (13)

where

P
mð Þ

in;0 ¼
o
2

X
jk

Im D
mð Þ

dir;jk

n o
D�1
totS

ext
ff D

�H
tot

� 

jk
, (14)

hnm ¼
2

p

X
jk

Im D
mð Þ

dir;jk

n o
D�1
tot Im D

nð Þ

dir

n o
D�H
tot

� 

jk
: (15)

Eq. (13) indicates that the ensemble average input power to the direct field of the mth subsystem
can be separated into the input powers due to: (i) external excitation and (ii) contributions from
the reverberant loading associated with the reverberant fields of each statistical subsystem
(including the mth). The coefficient hnm gives the ensemble average input power to the direct field
of the mth subsystem per unit modal energy density in the reverberant field of the nth subsystem.
This coefficient has been referred to previously as a ‘power transfer coefficient’ [14]. A comparison
with the definition of the CLF employed in traditional SEA reveals that5

hnm ¼ onnZnm. (16)
5Numerous authors have discussed whether hnm or Znm provides the most physical insight into the coupling between

subsystems (see, for example, Newland [12], Lyon and Scharton [13] and Fahy [14]). The advantage of hnm is that the

coupling parameter is a local property of the junction (and does not depend on the extent of the subsystem), the
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Eqs. (15) and (16) provide a general definition of the CLFs between statistical subsystems
coupled by an arbitrary number of deterministic subsystems (regardless of the shape of the
connection regions or the number of degrees of freedom used to describe the displacement field
across each connection region). It should be noted that the CLF defined here accounts for
damping in any intervening deterministic subsystems (in contrast to the CLFs employed in
traditional SEA). In Appendix A, it is shown that the ensemble average power transfer coefficients
are always symmetric regardless of the dissipation in the intervening subsystems so that
hnm ¼ hmn.

3.4. Power leaving mth reverberant field

The ensemble average rate at which energy leaves the reverberant field of the mth subsystem is
given by

P
mð Þ
out;rev ¼

o
2

X
jk

S
mð Þ;rev

qq;jk Im Dtot;jk

� �
¼

Em

nm

htot;m, (17)

where S mð Þ;rev
qq represents the component of the response due to excitation by the mth reverberant

field and where

htot;m ¼
2

p

X
jk

Im Dtot;jk

� �
D�1
tot Im D

mð Þ

dir

n o
D�H
tot

� 

jk
. (18)

The power transfer coefficient htot,m describes the total energy leaving the mth reverberant field per
unit modal energy density in the mth reverberant field. Eq. (17) can also be written in an
alternative form by explicitly describing the power dissipated by damping within the deterministic
subsystems. The resistive component of the total dynamic stiffness consists of contributions from
the direct fields of the various statistical subsystems and the damping applied to the deterministic
subsystems so that

Im Dtotf gjk ¼ Im Ddf gjk þ
X

n

Im D
nð Þ

dir

n o
jk
, (19)

Eq. (17) can therefore also be written as

P
mð Þ
out;rev ¼

Em

nm

ha
m þ

X
n

hnm

 !
, (20)

where the term ha
m is given by

ham ¼
2

p

X
jk

Im Ddf gjk D�1
totIm D

mð Þ

dir

n o
D�H
tot

� 

jk
. (21)

The term ha
m indicates the power dissipated by the deterministic subsystems in the system per unit

modal energy density in the mth reverberant field.
(footnote continued)

advantage of Znm is that it enables coupling and dissipated powers to be readily compared. For the current analysis,

either coefficient may be readily computed from the other.
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3.5. Power dissipated within the mth reverberant field

The ensemble average power dissipated within the mth reverberant field can be described by a
damping loss factor Zm so that

Pdiss;m ¼ oZmEm. (22)

For consistency with previous notation, it is convenient to relate the dissipated power to the
modal energy density so that

Pdiss;m ¼ Mm
Em

nm

, (23)

where Mm represents the (half power bandwidth) modal overlap factor for the mth reverberant
field and is given by

Mm ¼ onmZm. (24)

3.6. Reverberant power balance

Inserting Eqs. (23), (17) and (13) into Eq. (11) gives the following expression for power balance
within the mth reverberant field

Mm þ htot;m
� �Em

nm

�
X

n

hmn

En

nn

¼ P
mð Þ

in;0. (25)

Writing the power balance equations for each reverberant field in turn results in a set of
simultaneous equations for the ensemble average response of the reverberant fields

M1 þ htot;1 � h11 � � � �h1m

..

. . .
.

�hm1 Mm þ htot;m � hmm

2
664

3
775

E1

n1

..

.

Em

nm

2
6666664

3
7777775
¼

P
1ð Þ

in;0

..

.

P
mð Þ

in;0

2
6664

3
7775. (26)

From Eq. (20), the previous expression can also be written as

M1 þ ha
1 þ

P
na1

hn1 � � � �h1m

..

. . .
.

�hm1 Mm þ ham þ
P
na1

hm1

2
666664

3
777775

E1

n1

..

.

Em

nm

2
6666664

3
7777775
¼

P
1ð Þ

in;0

..

.

P
mð Þ

in;0

2
6664

3
7775. (27)

If the deterministic subsystems are undamped (so that ha
m ¼ 0 for all m), then the previous

expression is identical to the symmetric form of the SEA equations [1,2]. However, in this
derivation the equations arise by considering the ensemble average power balance between a set of
coupled subsystems with uncertain boundaries. The current approach also provides an explicit
definition of the CLFs (or power transfer coefficients) between all statistical subsystems regardless
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of the level of deterministic detail introduced into the model. In general, the approach also
automatically yields ‘indirect’ CLFs (CLFs between statistical subsystems that are not physically
adjacent). If the modal overlap or absorption ham is non-zero for each statistical subsystem, then
the previous matrix is positive-definite and can be inverted to find the response of the reverberant
fields of the statistical subsystems. The reverberant field response can then be inserted into Eq. (9)
to find the ensemble average cross-spectral response of the system.
This concludes the derivation of the proposed method. The following sections summarize the

solution procedure for the method and provide a numerical example.
4. Summary of the method

The solution procedure for the method derived in the previous sections is summarized below:

System definition
(i)
 A system is partitioned into a set of coupled subsystems. Connection regions are specified on
each subsystem.
(ii)
 The deterministic boundaries of the various subsystems are then defined. This definition
(along with the choice of substructuring and the definition of coherently coupled and
incoherently coupled connection regions) explicitly defines the parts of a system that are
assumed to be known deterministically. Typically, the identification of the deterministic
boundary regions is based on an estimate of the propagating wavelengths within a given
subsystem (in many instances this step may simply consist of a statement that subsystems
smaller than a wavelength are modeled deterministically).
(iii)
 Degrees of freedom are specified for: (a) the deterministic subsystems and (b) the junctions
which involve only statistical subsystems (the ‘statistical junctions’ in the system).
Assembly of direct field equations
(iv)
 The dynamic stiffness matrix for the deterministic subsystems Dd is obtained at a given frequency
of interest using, for example, a finite or boundary element analysis. The excitation applied to the
system is specified in terms of a cross-spectral matrix at a given frequency of interest Sextff .
(v)
 The direct field dynamic stiffness matrix D
mð Þ

dir is calculated for each statistical subsystem. In
general, this dynamic stiffness can be found from a boundary element analysis of the
deterministic boundaries of each statistical subsystem. However, in many instances the
dynamic stiffness can also be found analytically for ‘canonical’ point, line and area
connections to common subsystems (with the assumption that the response of distant
connections to the same subsystem are incoherent). Such an approach results in significant
savings in computational expense and is justified for connections whose separation is large
(and/or uncertain) in comparison with a wavelength. It is noted in passing that this
assumption is usually employed in the traditional wave approach to SEA (where CLFs are
calculated locally for individual junctions).
(vi)
 The total dynamic stiffness matrix for the system is then assembled (Eq. (4)).
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Assembly of reverberant field equations
(vii)
 The input power to each statistical subsystem due to the external excitation is calculated
using Eq. (14).
(viii)
 The ‘power transfer coefficients’ (or CLFs) between the statistical subsystems are then
calculated using Eq. (15) (looping over the excited and receiving statistical subsystems).
(ix)
 The ‘total power transfer coefficients’ are calculated for each statistical subsystem using
Eq. (18).
(x)
 The modal overlap factors are calculated for each statistical subsystem using Eq. (24).

(xi)
 The reverberant power balance equations are assembled for the statistical subsystems using

Eq. (26) and the external input powers found at step (vii).
Solution for reverberant response and direct field response
(xii)
 The reverberant power balance equations in Eq. (26) are solved to find the ensemble average
modal energy density in the reverberant field of each statistical subsystem.
(xiii)
 The reverberant energy levels are inserted into Eqs. (9) and (10) to find the ensemble average
cross-spectral response /SqqS. The response consists of contributions from the external
loading and the reverberant loading from each statistical subsystem.
(xiv)
 The total energy of each statistical subsystem is found by adding the energy in the direct and
reverberant fields (in many instances, the former is small compared with the latter and can
be neglected).
(xv)
 The analysis is repeated for each discrete frequency of interest.
5. Numerical example

The following section provides a simple numerical example in which predictions using the
proposed method are compared with the results of a large FE Monte Carlo simulation. In this
section, the proposed method is referred to as a ‘Hybrid FE-SEA method’ since the method
combines deterministic and statistical (SEA-like) descriptions of the dynamic behavior of various
subsystems in a system (although one could perhaps also view the method as being a generalized
wave or boundary approach to SEA).
Consider the structure illustrated in Fig. 9. Two thin aluminum plates are connected to a z-

section frame via five point connections; the first plate is excited and interest lies in predicting the
transverse response of the second plate across a frequency range from 15Hz to 1.5 kHz. The first
plate is assumed to be excited by a transverse point force whose precise location within the
subsystem is unknown; for a deterministic FE model, such an excitation can be represented by
spatially incoherent (rain-on-the-roof) excitation. The properties of the structure are listed in
Table 1. The structure has approximately 150 modes below 1.5 kHz. The chosen example has a
relatively small number of modes compared with many vibro-acoustic problems of practical
interest. For example, a typical vibro-acoustic model of a 2m section of an aircraft fuselage can
contain upwards of 400,000 structural modes below 10 kHz; the addition of internal acoustic
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Fig. 9. A ‘complex’ structural system consisting of two statistical subsystems (the flexural wavefields of the two plates)

point connected to various deterministic subsystems (the z-section frame and the in-plane wavefields of the two plates).

Subsystem labels are discussed in Section 5.2.1.

Table 1

Properties of structure

Property Value

Source plate thickness 1e�3m

Receiving plate thickness 0.75e�3m

Source plate dimension 0.28	 0.35m

Receiving plate dimension 0.3	 0.35m

Frame plate thickness 3e�3m

Frame height 60e�3m

Frame flange width 20e�3m

Young’s modulus 71e9Pa

Poisson’s ratio 0.33

Density 2700 kg/m3

Damping Loss factor 0.01

Radius of point connections 5e�3m
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cavities to such a model increases the mode count to approximately 8 million modes below
10 kHz. The use of a smaller simplified numerical example (for which an FE Monte Carlo
simulation is computationally tractable) has been adopted here to illustrate the general
principles behind the Hybrid method. It is important to bear in mind, however, that, for most
practical mid- and high-frequency vibro-acoustic problems, a statistical description of the
complex subsystems in a system is essential in order to provide an analysis that is robust and
computationally tractable.
The flexural wavefields of the plates are below modal overlap across the frequency range of

interest (the half power modal overlap of the source plate equals unity at 3.20 kHz, while the half
power modal overlap of the receiving plate equals unity at 2.24 kHz). The structure can be
considered to be ‘complex’ since, across the frequency range of interest, the flexural wavelengths
of the two plates are small in comparison with the dimension of the plates. An analysis of the
vibro-acoustic behavior of the entire structure using traditional SEA is complicated by the
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presence of various ‘stiff’ subsystems (the in-plane response of the plates and the z-section frame)
and the nature of the connections between the subsystems (which are not particularly amenable to
analysis using existing CLF formulations). An analysis of the vibro-acoustic behavior of the entire
structure using FE is complicated by the sensitivity of the response to small perturbations in the
properties of the structure (and, for more general structures, by the computational expense
required to model the statistical subsystems with FE).
5.1. FE Monte Carlo simulation

An FE Monte Carlo simulation was performed in order to provide a comparison with the
Hybrid method. Such an analysis requires that the ensemble of structures under consideration be
defined precisely. There are various ways in which one might choose to define such an ensemble
and at first sight it might appear that the choice of a particular ensemble is somewhat arbitrary.
However, as discussed previously, the ensemble average response tends to become insensitive
to the precise details of the ensemble as the amount of uncertainty is increased (the statistics
quickly become saturated and tend to the maximum entropy limit). This therefore provides
some motivation for adopting an ensemble in the current example that is simple to implement
numerically. An ensemble was therefore generated by adding 20 point masses (each with a
mass of 15 g) to the plates at random locations. It should be noted that the maximum entropy
ensemble assumed in the Hybrid method encompasses such an ensemble (the random boundary
for such an ensemble consists of a series of internal discontinuities with a particular reactive
impedance).
The uncertainty introduced into the model in this example represents uncertainty in the

distribution of approximately 25% of the mass of the structure. The amount of uncertainty was
chosen to ensure that the lower-order modes of the plates were sufficiently perturbed across the
ensemble (the higher-order modes of the plates are much more sensitive to perturbation and
similar results can be obtained using significantly less added mass). The amount of uncertainty in
the present example is not, however, unrealistic and provides perturbations similar to those that
occur when there is uncertainty regarding the precise impedance boundary conditions of the
plates.
An FE model of the (unperturbed) structure was created using approximately 5250 (CTRIA3)

shell elements.6 The resulting model contained approximately 15,000 analysis degrees of freedom.
An eigensolution was then performed and 287 modes were extracted with natural frequencies
below 3250Hz. Fig. 10 shows an example mode shape with a natural frequency around 900Hz. In
order to reduce the computational expense of the Monte Carlo simulation, the global mode
shapes were then used as basis functions in subsequent analysis. For each trial in the Monte Carlo
simulation the impedance of the random point masses was projected onto the modal basis and
(modal) mass and stiffness matrices were generated. A subsequent eigenproblem was then
performed to obtain the modes and natural frequencies of the perturbed structure. The flexural
energy in each plate subsystem, due to rain-on-the-roof excitation applied to the source plate, was
calculated using the FE post-processing equations derived in Ref. [16].
6Such elements can be prone to locking [15]; the use of such elements is, however, not expected to alter the

conclusions of the example.
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Fig. 10. Example of mode shape from a full FE model for a single realization of the ensemble.
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The computed energies and input powers were used to build up an energy influence coefficient
(EIC) matrix (the ijth entry of this matrix gives the energy in the ith subsystem due to input power
applied to the jth subsystem). By examining the inverse of this matrix, it is possible to estimate the
effective CLFs between various FE subsystems in a system for each realization of the ensemble.
Ensemble average effective CLFs computed using the FE Monte Carlo simulation can then be
compared with the ensemble average CLFs computed using the Hybrid approach.
The flexural energy in the receiving plate per unit input power to the source plate is plotted in

Fig. 11 for two realizations of the ensemble. The sensitivity of the response to small changes in the
properties of the two plates is clearly evident. For each realization of the ensemble, the 2	 2
matrix of EICs was computed and inverted to obtain estimates of the ‘effective CLFs’ between the
flexural wavefields of the two plate subsystems. The Monte Carlo simulation was performed for
500 separate realizations of the ensemble. The overall simulation took approximately 12 h on a
2GHz desktop PC (it is noted in passing that the same simulation using a nodal basis rather than
a modal basis would require approximately 120 h of simulation time).
The energy responses in the source and receiving subsystems are shown in Fig. 12 for each

member of the ensemble. The variance in the response is clearly evident, even at relatively low
frequencies. The ensemble average response is also plotted in the Figure. It can be seen that
distinct fluctuations remain in the ensemble average response of the structure. For example,
around 950Hz a significant amount of energy is transmitted through the frame into the receiving
plate across the ensemble (the peak response being approximately 10 dB higher than the response
at neighboring frequencies). The increase of energy in the receiving plate is accompanied by a
slight reduction in the energy of the source plate (approximately 2–3 dB at 950Hz). The effective
CLFs between the flexural wavefields of the two plate subsystems, calculated using the Monte
Carlo simulation, are plotted in Fig. 13. Similar fluctuations are observed in the effective CLF
when averaged across the ensemble (although such fluctuations are difficult to discern from an
examination of the effective CLF of a given realization of the ensemble).
5.2. Hybrid method

This section discusses the creation of a Hybrid model of the example structure. To illustrate the
general approach, the solution procedure described in Section 4 is followed.
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Fig. 12. Energy in flexural wavefields of (a) source plate and (b) receiving plate, per unit input power computed using:

(i) an FE Monte Carlo simulation and (ii) the Hybrid approach. Gray lines, computed using Monte Carlo approach for

500 realizations of ensemble; white line, ensemble average of FE results; black line, ensemble average computed using

Hybrid approach.
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Fig. 11. Flexural energy in receiving plate per unit input power applied to source plate, computed using full FE model.

Comparison of response obtained for two separate realizations of the ensemble.
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5.2.1. System definition

The classification of the subsystems in a system into statistical and deterministic subsystems can
be based on an approximate estimate of the number of half wavelengths within the various
subsystems across a given frequency range of interest. Table 2 lists the number of expected half
wavelengths within the plate subsystems (estimated from the free wavenumber within these
subsystems). It can be seen that, for this structure, the flexural wavefields of the plates are likely to
be well represented by statistical subsystems across the frequency range of interest, while the in-
plane wavefields are likely to well represented by deterministic subsystems. The frame subsystem is
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Table 2

Classification of plate subsystems used in model

Subsystem Description ka/p at 15Hz ka/p at 1.5 kHz Classification

1 Plate flexural wavefield 0.8 8 Statistical

2 Plate in-plane wavefield 0.03 0.3 Deterministic

3 Plate flexural wavefield 0.9 9 Statistical

4 Plate in-plane wavefield 0.03 0.3 Deterministic
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Fig. 13. CLF between flexural wavefields of plates computed using: (i) an FE Monte Carlo simulation and (ii) the

Hybrid approach. Gray lines, CLFs computed using Monte Carlo approach for 500 realizations of ensemble; white line,

ensemble average of FE results; black line, CLF computed using Hybrid approach. Peaks in CLF associated with global

basis functions of FE subsystems (mode number labeled).
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relatively stiff and has few modes across the frequency range of interest and is therefore likely to
be well represented by a deterministic subsystem.
The connection regions for the statistical subsystems are defined by the locations of the point

connections to the frame and the locations of the applied excitation. The excited plate contains
three point connections (two associated with junctions and one associated with the location of the
excitation). The deterministic boundary for the statistical subsystems is defined by the location of
the connection regions (it is noted in passing that if additional boundary conditions were present
in the vicinity of the connections then these could be included in the analysis). The deterministic
boundary is defined so that the connection regions are internal to each statistical subsystem.
In this example, the degrees of freedom for the Hybrid model are taken to be the modal degrees

of freedom of the deterministic subsystems. The degrees of freedom for the connection to the
excitation in the excited subsystem are taken to be the six physical degrees of freedom associated
with a point connection (this is explained in more detail in subsequent discussion). A finite
element model of the deterministic subsystems (the frame and in-plane response of the plates) was
created by replacing the shell elements in the plate subsystems of the FE model of the previous
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section with membrane elements (CTRMEM). To ensure that the FE model only accounted for
the in-plane mass of the plate subsystems (and not the transverse mass), the mass of the membrane
elements was applied separately (by directly specifying concentrated masses applied to the in-
plane degrees of freedom). A modal analysis was then performed on the FE subsystems and 29
mode shapes were extracted with frequencies below 3250Hz (compare this with the FE model of
the previous section in which approximately 290 modes were extracted over the same frequency
range). By definition, the deterministic subsystems in a Hybrid model contain relatively few
modes, and the resulting eigenproblem is therefore numerically efficient.

5.2.2. Assembly of direct field equations

The deterministic dynamic stiffness matrix for the system is found from the dynamic stiffness of
the global basis functions. The local direct field dynamic stiffness matrix D

mð Þ

dir for each statistical
subsystem can, in general, be computed from a boundary element analysis. Such an approach
accounts for the coherence that occurs between the various connections to a subsystem. However,
in many instances it is often acceptable to neglect the coherence that occurs between the various
connections and consider the direct field dynamic stiffness of each connection in isolation. Such
an approach is computationally efficient and is justified if there is uncertainty in the relative
spacing of the connections (or if the spacing between the connections is large in comparison with a
wavelength). In this example, the various connection regions to the statistical subsystems were
therefore assumed to be ‘incoherently coupled’. Neglecting the coherence between the excitation
and junction connection regions therefore implicitly accounts for the uncertainty in the precise
location of the excitation connection region within the excited subsystem (this can be viewed as
being equivalent to applying rain-on-the-roof-excitation to the excited subsystem).
The direct field dynamic stiffness of each connection region can then be obtained using a wave

analysis [9]. In this approach, the direct field dynamic stiffness of each point connection
corresponds to the dynamic stiffness of a rigid disk embedded in an infinite plate (the current
analysis only requires the contributions to the dynamic stiffness arising from flexural waves).
The dynamic stiffness of each point connection is then projected onto the global basis functions
to obtain the contribution to the direct field dynamic stiffness matrix from each statistical
subsystem D

mð Þ

dir .
The total dynamic stiffness matrix for the system is then assembled and the input power due to

the externally applied excitation is found (in this example, since the coherence between the various
point connections is neglected, the input power to the source subsystem is equivalent to the input
power to an infinite plate). The power transfer coefficients are then calculated for the statistical
subsystems using Eqs. (15) and (18), and the reverberant power balance equations assembled (in
this example, the reverberant power balance matrix is of dimension 2	 2). The calculation of the
modal overlap of each statistical subsystem requires that the modal densities of the statistical
subsystems be known; in this example the modal densities were calculated using standard
expressions [9].

5.2.3. Solution for reverberant response and response recovery

The reverberant power balance matrix can then be inverted and the reverberant response of
each statistical subsystem obtained. Since the plate subsystems are lightly damped, the total
energy of the plate is likely to be dominated by the reverberant field and the contribution to the
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total energy from the direct field was therefore neglected in this example. The response calculation
was repeated for 1000 frequency points of interest. The entire calculation took less than a minute
(compare this with the 12 or 120 h Monte Carlo simulations discussed in the previous section).
The Hybrid prediction of the ensemble average energy in the source and receiving plates is

overlaid in Fig. 12. There is reasonably good agreement between the Hybrid prediction and the
results of the Monte Carlo simulation. The discrepancies between the two results at lower
frequencies are most likely due to the limited amount of uncertainty in the properties of the plates
in the Monte Carlo simulation (closer agreement might be expected if the size and shapes of the
plates are also perturbed in the Monte Carlo simulation in order to increase the amount of
uncertainty in the ensemble). Some discrepancies may also be due to convergence issues (due to
the finite number of trials in the Monte Carlo simulations and the finite number of basis functions
used in the Monte Carlo and Hybrid analyses).
The CLF between the source and excited wavefields computed using the Hybrid approach is

plotted in Fig. 13. There is good agreement between this CLF and the ensemble average of the
effective CLFs obtained in the Monte Carlo simulation. However, the Hybrid approach also
provides insights into the way in which energy is transmitted between the source and receiving
plates across the ensemble. Each peak in the predicted CLF corresponds to a particular global
basis function of the deterministic subsystems. The various global basis functions have been
labeled in the figure (nb. six rigid body basis functions were also included in the analysis but are
not labeled). Each global basis function of the deterministic subsystems provides a separate
transmission path between the statistical subsystems. Indeed, the deterministic subsystems can be
viewed as extended dissipative junctions which couple the various statistical subsystems in a
model.
By restricting the number of degrees of freedom used in the Hybrid analysis, it is possible to

perform an approximate contribution analysis to estimate how each global basis function
contributes to a given CLF. The contribution to the CLF from the various global basis functions
of the deterministic subsystems is plotted in Fig. 14. It can be seen that the peak that occurs in the
ensemble average CLF around 950Hz is primarily due to the contribution of a single global basis
function (the sixth global basis function). Examples of the various global basis functions used in
the Hybrid model are illustrated in Fig. 15. It can be seen that the sixth global basis function
provides a particularly good transmission path because of the spatial matching that occurs
between the mode shape and the connection locations (the mode shape has a large displacement at
the various connection points).
The transmission of energy between the two statistical subsystems can be modified by

modifying the contributions to the overall CLF from the various global basis functions. For
example, one strategy for reducing the ensemble average transmission around 950Hz is to
investigate the use of alterative locations for the point connections to the frame. Since the Hybrid
model is computationally efficient, the effects of design changes on the transmission of energy
between the statistical subsystems can be readily evaluated and robust design changes (design
changes that are insensitive to perturbation) can be identified. For example, the effects of
isolators, alternative frame designs and localized damping treatments can be readily evaluated.
To demonstrate this, Fig. 16 shows the effect that the addition of a local damping treatment to

the FE subsystems has on the computed CLF (in this example, the damping loss factor of the FE
subsystems was modified from 0.01 to 0.1, to model, for example, the addition of a viscoelastic
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Fig. 14. Contribution to CLF from various global basis functions of deterministic subsystems computed using Hybrid

approach: thick line, total CLF computed using all global basis functions; thin lines, CLF computed when analysis only

includes a particular global basis function.

Fig. 15. Examples of global basis functions used in the Hybrid model (nb. plots only include contributions from

membrane motion when plotting the response of the plate subsystems).
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Fig. 16. Effect of modification to damping loss factor of FE subsystems on CLF between flexural wavefields of plates

(calculated using Hybrid approach): solid line, ZFE ¼ 0:01; dashed line, ZFE ¼ 0:1).

P.J. Shorter, R.S. Langley / Journal of Sound and Vibration 288 (2005) 669–699696
damping treatment to the frame). It can be seen that the increased damping has most influence at
the resonances of the FE subsystems (and has relatively little influence when the transmission is
dominated by the non-resonant response of the frame). In this example, the additional damping
reduces the ensemble average CLF by approximately 10 dB around 950Hz.
A Hybrid model also has potential application for the design of robust broadband active noise

control systems. In such applications an active control system may be designed to target the global
basis functions of the deterministic subsystems in a system, in order to minimize the transmission
of vibrational energy through a complex system. A Hybrid model provides an efficient means with
which to evaluate the effectiveness of such control schemes, and provides insights into where to
locate actuators and sensors in order to improve control performance.
It is sometimes stated that a necessary requirement for the application of SEA methods is that

the modal overlap in the statistical subsystems be greater than unity. As can be seen in the
previous example, this statement is not strictly correct. A modal overlap greater than unity
reduces the variance of the response across the ensemble (and ensures that the response of a single
realization of the ensemble is more likely to match the ensemble average response), but is not
necessarily a prerequisite for the successful application of SEA methods (the modal overlap of the
source plate in this example equals unity at 3.20 kHz, while the modal overlap of the receiving
plate equals unity at 2.24 kHz).
6. Concluding remarks

A general method has been presented for predicting the ensemble average response of coupled
subsystems with uncertain properties. The method has been derived explicitly without reference to
existing derivations of SEA; however, the traditional wave approach to SEA can be viewed as a
special case of the proposed method. The advantage of the proposed method is that it provides a
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systematic way to analyze the response of systems that are not particularly amenable to analysis
by existing SEA (or FE) methods. In particular, the proposed method enables an arbitrary
amount of deterministic detail to be included in a given analysis (without requiring that an entire
system be known deterministically). The deterministic subsystems in a system can be viewed as
spatially distributed ‘lossy’ junctions that transfer energy between the statistical subsystems in a
system (these junctions may also be directly excited in the proposed approach).
There are a number of philosophical differences between the proposed method and traditional

SEA that warrant further discussion. In the current derivation, the proposed method has been
presented as an analytically exact statistical method (approximations may be introduced when
estimating the direct field dynamic stiffness of a subsystem; however, the underlying method is
exact). No assumptions were made regarding the strength of coupling between subsystems, the
nature of the excitation or the resonant nature of the response. Such assumptions were instead
replaced with the assertion that a significant amount of uncertainty exists regarding the properties
of certain subsystems. Defining the deterministic boundaries (and subsystems) of a system
therefore implicitly defines the ensemble in the current analysis.
The value of this approach depends on how well the assumed ensemble matches the ensembles

encountered in practical applications. Since detailed information about the sources of uncertainty
in complex structures is seldom available (and in most practical instances is seldom attainable),
the proposed approach represents a compromise in which the information that is precisely known
about a system can be included in an analysis while minimizing the assumptions made about
missing information. For many practical applications, the definition of the deterministic and
statistical portions of a model can often be made based on estimates of the propagating
wavelengths within various regions of a system. Since the wavelengths within typical subsystems
can often differ by several orders of magnitude, an order of magnitude estimate of the wavelength
in comparison with the subsystem dimension is often all that is required.
In traditional SEA it is sometimes assumed that, since the modal density is an input quantity,

the size of an SEA subsystem is assumed to be deterministic. In the current analysis, the responses
of the reverberant fields are determined from a power balance rather than an energy balance (the
modal density is a secondary quantity that is used to relate the incident power in a reverberant
field to the total energy of the reverberant field). Interestingly, in the current analysis, the size of a
statistical subsystem is therefore not a required input quantity (the size of a statistical subsystem
enters the analysis indirectly through the definition of the power dissipated within the reverberant
field of the subsystem). The minimum amount of information that is needed to model the
ensemble average response of a statistical subsystem in the proposed method is: (i) the direct field
dynamic stiffness of the connections to the subsystem and (ii) the modal overlap of the subsystem.
Finally, it should be noted that the discussion in the current manuscript has been restricted to

estimates of the ensemble average response. The extension of the method to encompass higher
order response statistics is the subject of ongoing research.
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Appendix A

In this appendix, it is demonstrated that the matrix of power transfer coefficients is symmetric
for a linear system so that hnm ¼ hmn. From Eq. (15), the nmth power transfer coefficient is given
by

hnm ¼
2

p

X
jk

Im D
mð Þ

dir

n o
jk
D�1
totIm D

nð Þ

dir

n o
D�H
tot

� 

jk
. (28)

Writing the matrix multiplication as a summation gives

hnm ¼
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mð Þ

dir

n o
jk
Im D
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dir

n o
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D�1
tot
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. (29)

The mnth power transfer coefficient is given by

hmn ¼
2

p

X
jkrs

Im D
mð Þ

dir

n o
jk
Im D

nð Þ

dir

n o
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D�1
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D�H
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. (30)

The receptance matrix of a linear system described by real basis functions can always be written in
a symmetric form so that

D�1
tot

� �
jr
¼ D�1

tot

� �
rj
; D�H

tot

� �
sk
¼ D�H

tot

� �
ks
. (31)

Inserting the previous expression into Eq. (30) gives

hmn ¼
2

p

X
jkrs

Im D
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dir

n o
jk
Im D

nð Þ

dir

n o
rs
D�1
tot

� �
jr
D�H
tot
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sk
¼ hnm. (32)

This therefore provides the required demonstration of the symmetry of the power transfer
coefficient matrix. It should be noted that the power transfer coefficients defined here describe the
ensemble average energy flow in a system (the previous result is therefore a relationship which
holds for the ensemble but not necessarily for any given realization).
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